179 research outputs found

    Optimization design of mth-band FIR filters with application to image processing

    Get PDF
    Cone programming (CP) is a class of convex optimization technique, in which a linear objective function is minimized over the intersection of a set of affine constraints. Such constraints could be linear or convex, equalities or inequalities. Owing to its powerful optimization capability as well as flexibility in accommodating various constraints, the cone programming finds wide applications in digital filter design. In this thesis, fundamentals of linear-phase M th-band FIR filters are first introduced, which include the time-domain interpolation condition and the desired frequency specifications. The restriction of the interpolation matrix M for linear-phase two-dimensional (2-D) M th-band filters is also discussed by considering both the interpolation condition and the symmetry of the impulse response of the 2-D filter. Based on the analysis of the M th-band properties, a semidefinite programming (SOP) optimization approach is developed to design linear-phase 1-0 and 2-D M th-band filters. The 2-D SOP optimization design problem is modeled based on both the mini-max and the least-square error criteria. In contrast to the 1-D based design, the 2-D direct SDP design can offer an optimal equiripple result. A second-order cone programming (SOCP) optimization approach is then presented as an alternative for the design of M th-band filters. The performances as well as the design complexity of these two design approaches are justified through numerical design examples. Simulation results show that the performance of the SOCP approach is better than that of the SDP approach for 1-D M th-band filter design due to its reduced computational complexity for the worst-case, whereas the SDP approach is more appropriate for the 2-D M th-band filter design than the SOCP approach because of its efficient and simple optimization structure. Moreover, the designed M th-band filters are proved useful in image interpolation according to both the visual quality and the peak signal-to-noise ratio (PSNR) for the images with different levels of details

    Trap characterization in composite of solid-liquid using dual-level trap model and TSDC method

    No full text
    Charge trap is considered to be one of the effective characteristic parameters for qualitatively evaluating the aging status of insulating material. In this paper, the trap characteristics in oil-impregnated paper with different aging types (non-treatment, thermal treatment and electrical treatment) are investigated using a dual-level (shallow and deep energy) trap model based on space charge profiles and thermally stimulated depolarization current (TSDC) data. The simulated results based on the model are well consistent with the experimental results. Onthe other hand, the TSDC method can acquire much information related to the shallower traps, and the dual–level trap model can obtain much charge dynamicscharacteristics. It has been observed that thermally aging makes the shallow trap energy become deeper while electrically aging makes it shallower. Moreover, thetrap density in oil-impregnated paper increases after aging regardless of thermal or electrical aging

    Learn to Cluster Faces with Better Subgraphs

    Full text link
    Face clustering can provide pseudo-labels to the massive unlabeled face data and improve the performance of different face recognition models. The existing clustering methods generally aggregate the features within subgraphs that are often implemented based on a uniform threshold or a learned cutoff position. This may reduce the recall of subgraphs and hence degrade the clustering performance. This work proposed an efficient neighborhood-aware subgraph adjustment method that can significantly reduce the noise and improve the recall of the subgraphs, and hence can drive the distant nodes to converge towards the same centers. More specifically, the proposed method consists of two components, i.e. face embeddings enhancement using the embeddings from neighbors, and enclosed subgraph construction of node pairs for structural information extraction. The embeddings are combined to predict the linkage probabilities for all node pairs to replace the cosine similarities to produce new subgraphs that can be further used for aggregation of GCNs or other clustering methods. The proposed method is validated through extensive experiments against a range of clustering solutions using three benchmark datasets and numerical results confirm that it outperforms the SOTA solutions in terms of generalization capability

    Signature of the coexistence of ferromagnetism and superconductivity at KTaO3_3 heterointerfaces

    Full text link
    The coexistence of superconductivity and ferromagnetism is a long-standing issue in the realm of unconventional superconductivity due to the antagonistic nature of these two ordered states. Experimentally identifying and characterizing novel heterointerface superconductors that coexist with magnetism is challenging. Here, we report the experimental observation of long-range ferromagnetic order at the verge of two-dimensional superconductivity at KTaO3_3 heterointerfaces. Remarkably, we observe in-plane magnetization hysteresis loop persisting up to room temperature with direct current superconducting quantum interference device measurements. Furthermore, first-principles calculations suggest that the observed robust ferromagnetism is attributed to the presence of oxygen vacancies that localize electrons in nearby Ta 5dd states. Our findings not only indicate KTaO3_3 heterointerfaces as unconventional superconductors with time-reversal symmetry breaking, but also inject a new momentum to the study of the delicate interplay between superconductivity and magnetism boosted by strong spin-orbit coupling inherent to the heavy Ta in 5dd orbitals of KTaO3_3 heterointerfaces.Comment: 7 pages, 3 figure

    Two-dimensional superconductivity at heterostructure of Mott insulating titanium sesquioxide and polar semiconductor

    Full text link
    Heterointerfaces with symmetry breaking and strong interfacial coupling could give rise to the enormous exotic quantum phenomena. Here, we report on the experimental observation of intriguing two-dimensional superconductivity with superconducting transition temperature (TcT_c) of 3.8 K at heterostructure of Mott insulator Ti2_2O3_3 and polar semiconductor GaN revealed by the electrical transport and magnetization measurements. Furthermore, at the verge of superconductivity we find a wide range of temperature independent resistance associated with vanishing Hall resistance, demonstrating the emergence of quantum metallic-like state with the Bose-metal scenario of the metallic phase. By tuning the thickness of Ti2_2O3_3 films, the emergence of quantum metallic-like state accompanies with the appearance of superconductivity as decreasing in temperature, implying that the two-dimensional superconductivity is evolved from the quantum metallic-like state driven by the cooperative effects of the electron correlation and the interfacial coupling between Ti2_2O3_3 and polar GaN. These findings provide a new platform for the study of intriguing two-dimensional superconductivity with a delicate interplay of the electron correlation and the interfacial coupling at the heterostructures, and unveil the clues of the mechanism of unconventional superconductivity.Comment: 17 pages, 4 figure

    Quantum metallic state in the titanium sesquioxide heterointerface superconductor

    Full text link
    The emergence of the quantum metallic state marked by a saturating finite electrical resistance in the zero-temperature limit in a variety of two-dimensional superconductors injects a new momentum to the realm of unconventional superconductivity. Despite much research efforts over last few decades, there is not yet a general consensus on the nature of this unexpected quantum metal. Here, we report the unique quantum metallic state within the hallmark of Bose-metal characterized by the saturated resistance and simultaneously vanished Hall resistance in the titanium sesquioxide heterointerface superconductor Ti2_2O3_3/GaN. Strikingly, the quantum bosonic metallic state proximate to the two-dimensional superconductivity-metal transition tuned by magnetic fields persists in the normal phase, suggesting that the existence of composite bosons formed by electron Cooper pairs survives even in the normal phase. Our work marks the observation of the preformed electron Cooper pairs in heterointerface superconductor and sheds new light on understanding the underlying pairing mechanism of unconventional superconductivity.Comment: 6 pages, 4 figure
    • …
    corecore